Self-adaptive global best harmony search algorithm for training neural networks

نویسندگان

  • Sinem Kulluk
  • Lale Özbakir
  • Adil Baykasoglu
چکیده

This paper addresses the application of Self-adaptive Global Best Harmony Search (SGHS) algorithm for the supervised training of feed-forward neural networks (NNs). A structure suitable to data representation of NNs is adapted to SGHS algorithm. The technique is empirically tested and verified by training NNs on two classification benchmarking problems. Overall training time, sum of squared errors, training and testing accuracies of SGHS algorithm is compared with other harmony search algorithms and the standard back-propagation algorithm. The experiments presented that the proposed algorithm lends itself very well to training of NNs and it is also highly competitive with the compared methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

P/E Modeling and Prediction of Firms Listed on the Tehran Stock Exchange; a New Approach to Harmony Search Algorithm and Neural Network Hybridization

Investors and other contributors to stock exchange need a variety of tools, measures, and information in order to make decisions. One of the most common tools and criteria of decision makers is price-to earnings per share ratio. As a result, investors are in pursuit of ways to have a better assessment and forecast of price and dividends and get the highest returns on their investment. Previous ...

متن کامل

Structural Reliability: An Assessment Using a New and Efficient Two-Phase Method Based on Artificial Neural Network and a Harmony Search Algorithm

In this research, a two-phase algorithm based on the artificial neural network (ANN) and a harmony search (HS) algorithm has been developed with the aim of assessing the reliability of structures with implicit limit state functions. The proposed method involves the generation of datasets to be used specifically for training by Finite Element analysis, to establish an ANN model using a proven AN...

متن کامل

Feedforward neural network training using intelligent global harmony search

Harmony search algorithm is a meta-heuristic optimization method imitating the music improvisation process, where musicians improvise their instruments’ pitches searching for a perfect state of harmony. First, an improved harmony search algorithm is presented using the concept of swarm intelligence. Next, it is employed for training feedforward neural networks for three benchmark classification...

متن کامل

IIR System Identification Using Improved Harmony Search Algorithm with Chaos

Due to the fact that the error surface of adaptive infinite impulse response (IIR) systems is generally nonlinear and multimodal, the conventional derivative based techniques fail when used in adaptive identification of such systems. In this case, global optimization techniques are required in order to avoid the local minima. Harmony search (HS), a musical inspired metaheuristic, is a recently ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011